

## **Specifications KV80**

Immersion Cooler -80 ℃ probe



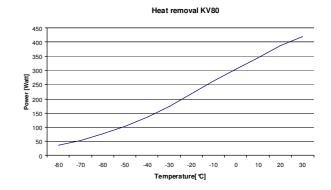
| Item           | Unit   | KV80                   |  |
|----------------|--------|------------------------|--|
| Ordering code  |        |                        |  |
| 230 Volt/50Hz  |        | 00T0216                |  |
| 230 Volt/60Hz  |        | 00T216A                |  |
| 115 Volt/60Hz  |        | 00T0260                |  |
| Minimum probe  | °C/°F  | -85 / -112             |  |
| temperature    |        |                        |  |
| Body           |        | Stainless Steel        |  |
| Hose length    | [mm]   | 2500                   |  |
| Probe length   | [mm]   | 190                    |  |
| Probe diameter | [mm]   | 47                     |  |
| Length         | [mm]   | 560                    |  |
| Width          | [mm]   | 450                    |  |
| Height         | [mm]   | 500                    |  |
| Weight         | [kg]   | 60                     |  |
| Power          | [Watt] | 1200                   |  |
| CE             | Confor | Conforms CE regulation |  |

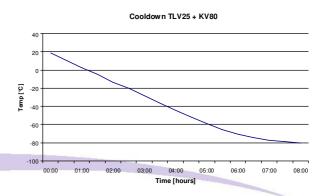
- Compact heat exchanger (probe)
- 2.5 meters flexible hose
- Fitted with wheels

## General

The KV80 is designed for heat extraction from fluid in viscometer baths. The combination of the KV80 and the low temperature viscosity measurement bath TLV25, allows stable viscosity measurements at low temperatures down to minus 80 degrees centigrade. Temperature stability of the TLV25-KV80 combination superseeds ASTM D445 requirements.

The cooling probe of the system is formed by a nickel plated cupper coil at the top of a flexible hose. This probe can be immersed in fluid which has to be cooled down.


The flexible hose measures 2 meters. When working at minimum temperatures the hose should not be moved anymore.


Performance test have been measured with a TLV25 filled with methanol.

The KV80 can be switched on or off on the front panel.

## Cooling medium

The KV-system is guaranteed HCFK free.



